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Homogeneous Generalized Master Equations
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It is shown that the method proposed in V. F. Los [J. Phys. A: Math. Gen. 34:
6389–6403 (2001)], which allows for turning the inhomogeneous time-convolu-
tion generalized master equation (TC-GME) into homogeneous (while retain-
ing initial correlations) time-convolution generalized master equation
(TC-HGME) for the relevant part of a distribution function, is fully applica-
ble to the quantum case and to the time-convolutionless GME (TCL-GME).
It is demonstrated by rederiving the TC-HGME and showing that it works in
both the classical and quantum physics cases. The time-convolutionless HGME
(TCL-HGME) retaining initial correlations, which is formally the same for
both the classical and quantum physics, has also been derived. Both the TC-
HGME and TCL-HGME are exact equations applicable on any timescale and
allow for consecutive treating the initial correlations and collisions on the equal
footing. A new equation for a momentum distribution function retaining initial
correlations has been obtained in the linear in the density of quantum particles
approximation. Connection of this equation to the quantum Boltzmann equa-
tion is discussed.

KEY WORDS: Generalized master equations; homogeneous generalized master
equations; initial correlations; evolution equation; kinetic equation.

1. INTRODUCTION

Derivation of kinetic (irreversible) equations from the reversible micro-
scopic dynamics of the many-particle systems remains one of the princi-
pal tasks of statistical physics. To achieve this goal, several assumptions
are usually made. One of them is related to the initial state of a system:
all derivations of the Boltzmann equations are mainly based on either fac-
torizing initial conditions (random phase approximation (RPA) or “molec-
ular chaos”) corresponding to uncorrelated initial state or on Bogoliubov’s
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principle of weakening of initial correlations.(1) The first is incorrect in
principle (as it has been clearly pointed out by van Kampen(2)) and the
second allows for obtaining the kinetic equation only by jumping over the
initial stage of the evolution, i.e. only for the timescale at which all ini-
tial correlations vanish. However, there may be correlations which do not
damp, e.g. caused by the conservation laws, such as the collective plasma
excitations; also, the initial quantum correlations, caused by the particles’
statistics, do not damp with time. Thus, the latter approach to treating
initial correlations results in the evolution equations which are not valid
on all timescales and do not allow for consecutive considerations of all
stages of the system of interest evolution, particularly, of the stage when
a system switches from the initial short-term evolution (when initial cor-
relations matter) to the long-term kinetic regime. This outlined problem
is common for both main methods of deriving the kinetic equations: the
BBGKY hierarchy(1) and the generalized master equation (GME).(3–5) In
the second approach, the initial many-particle correlations lead to appear-
ance of the (generally) non-negligible undesirable (irrelevant) inhomoge-
neous term in GME for the (relevant) part of interest of a distribution
function (statistical operator).

A proper accounting for initial correlation is an important (and gen-
erally not easy) problem to deal with, which has already a history (some
references may be found in my previous paper(6)). The importance of ini-
tial correlations for an open quantum systems has also been discussed in
the recently published book.(7)

A progress achieved in the dynamics of the many-particle systems
makes it possible, in principle, to study the entire evolution process of
systems in statistical mechanics on any timescale and to determine the
conditions under which a system evolves towards the equilibrium state. To
do that, the dynamics of initial correlations should be included into con-
sideration.

Recently, the method (based on the conventional projection opera-
tor technique) turning the conventional inhomogeneous generalized mas-
ter equations (GMEs) into homogeneous form has been proposed in.(6)

By introducing an additional identity for an irrelevant initial condition
term, it has become possible to express this term through the relevant part
of a distribution function. Thus, the irrelevant initial condition (inhomo-
geneous) term in time-convolution (i.e. non-Markovian) generalized mas-
ter equation (TC-GME),(3–5) caused by the correlations at an initial (at
t = t0) state of the whole system, has been transferred to the memory
kernel of TC-GME governing the relevant part of a distribution func-
tion. That resulted in time-convolution homogeneous generalized master
equation (TC-HGME) for the relevant part of a distribution function
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for a many-particle system. An appropriate construction of the relevant
part of a distribution function (using the projection operator technique)
allows for obtaining from TC-HGME the equation for a reduced dis-
tribution function (e.g. for a one-particle distribution function or for a
reduced probability distribution related to an open system interacting with
an environment), which is necessary and sufficient for calculating the aver-
age values of the dynamical variables (appropriate quantities of interest to
follow the time-evolution). The obtained TC-HGME is exact and, there-
fore, no information has been lost at its derivation. The influence of initial
correlations on the time-evolution of the system of interest is treated by
this equation on the equal footing with the correlations caused by subse-
quent collisions. It has been achieved through the modified memory kernel
which includes additional terms related to initial correlations. No approxi-
mation like the Bogoliubov principle of weakening of initial correlations(1)

or RPA is needed in order to exclude from TC-GME the undesirable
inhomogeneous initial condition term and transferring it to the memory
kernel.

The fact, that the effects of information on the system’s initial state
correlations may be accounted for through the changed memory kernel
is quite important because this obtained exact kernel serves as a starting
point for effective perturbation expansions. In connection with that, it is
worth reminding that Bogoliubov’s principle of weakening of initial corre-
lations implies that on a large enough timescale, |t − t0|� tcor (tcor is the
correlation time caused by inter-particle interaction), all initial correlations
damp and the time-dependence of multi-particle (irrelevant) distribution
functions is completely defined by the time-dependence of a one-parti-
cle (relevant) distribution function(1) (the time hierarchy, trel � tcor, how-
ever, is needed for such a procedure, where trel is the relaxation time for
a one-particle distribution function). This supposed by Bogoliubov func-
tional dependence of a multi-particle distribution function (Bogoliubov’s
anzats) leads to an approximate (valid only on the pointed above large
timescale) conversion of the inhomogeneous (including two-particle corre-
lations) equation for a one-particle distribution function of the BBGKY
hierarchy into a homogeneous one. Subsequent perturbation expansion of
this equation (e.g. in the small density powers) allows for avoiding the
so-called ‘secular terms’, essential at |t − t0| � trel, and which make the
direct perturbation expansion of the distribution functions in the BBGKY
hierarchy ineffective at |t − t0| � trel (the latter is valid only at |t − t0| �
trel and, therefore, cannot be applied to studying the kinetic stage of the
time-evolution characterized by the timescale trel). Thus, employing the
mentioned approach, Bogoliubov was successful in deriving the kinetic
(Markovian) equation for a one-particle distribution function, particularly
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the Boltzmann equation, which describes the time-evolution with the char-
acteristic time trel but is unable to account for the initial stage of the evo-
lution, t0 � t � tcor.

Bogoliubov’s principle of weakening of initial correlations or RPA
have also been used to get rid of an irrelevant part (a source) containing
all multi-particle correlations at the initial moment t0 in the GMEs and to
obtain the approximate homogeneous equations for the relevant part of a
distribution function (see, e.g. ref. 8).

It is also worth noting, that in order to get rid of some singled out
initial moment t0 and to obtain a definite solution, the limiting proce-
dure t0 →−∞ is used in Bogoliubov’s approach, which serves as a bound-
ary (factorizing initial) condition and introduces an irreversibility into the
Liouville equation.(1,8)

On the contrary, the exact kernel of TC-HGME, obtained in ref. 6
describes the influence of all correlations on the evolution process at all
times including the initial stage, t0 � t � tcor, when initial correlations
may matter. For example, to properly describe the effects of interaction of
the condensed matter systems with ultra-short (femtosecond) laser pulses
with duration which may match tcor, this initial stage of evolution can
not be ignored. On the other hand, the correlation time tcor often is of
the order of the timescale tmem on which the memory kernel of TC-GME
decays. Thus, if one studies the non-Markovian (memory) effects, which
are important on the timescale tmem, the initial correlations damping on
the timescale tcor � tmem may be essential. Also, as was already mentioned,
the obtained exact expression for the TC-HGME memory kernel allows
for effective perturbation expansions, e.g. with respect to the density of
a system, the inter-particle interaction or the subsystem-reservoir coupling
(for an open system), and the mentioned problem with the ‘secular terms’
does not appear on all timescales. Therefore, it may be stated that the
method suggested in ref. 6 allows for consecutive and effective pertur-
bational consideration of the evolution of a system of interest without
use of various rather artificial approaches (anzatses) to decoupling the
BBGKY hierarchy or avoiding the undesirable inhomogeneous terms in
GMEs.

This general scheme and TC-HGME were tested in ref. 6 by apply-
ing them to the case of a dilute gas of classical particles that resulted
in a new homogeneous equation for a one-particle distribution function
retaining initial correlations obtained in the linear approximation on the
small density parameter and for the space homogeneous case. This equa-
tion describes the dilute classical gas evolution at all times and converts
into the conventional Boltzmann equation on the appropriate timescale if
all initial correlations vanish on this timescale.
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In this paper we apply the method proposed in ref. 6 to the time-
convolutionless (time-local) generalized master equation (TCL-GME)(9,10)

with the inhomogeneous term containing initial correlations and show
how to convert it into exact time-convolutionless homogeneous general-
ized master equation (TCL-HGME). This equation describes the evolution
of a many-body system by means of the modified (by initial correlations)
time-local operator acting on the relevant part of a particles’ distribution
function (statistical operator). The time-local equations provide a conve-
nient tool for studying the non-Markovian (showing retardation) effects
(see, e.g. ref. 7).

The important question is whether the method developed in ref. 6 is
applicable to the quantum physics case. The quantum case is more com-
plicated, particularly, because of quantum correlations which are present
even in the absence of interaction between particles and do not damp
with time. The problem of the existence of some invert operators may also
arise. It will be shown in this paper that the obtained in ref. 6 TC-HGME
(and TCL-HGME obtained in this paper) may be as well applied to the
quantum systems. The quantum HGMEs have exactly the same structures
as the classical HGMEs, but the meaning of symbols are different in the
classical and quantum physics cases. To test our approach in terms of
concrete application in the quantum physics realm, we apply the time-con-
volution quantum HGME to the case of space homogeneous gas of quan-
tum particles and derive a new homogeneous quantum equation retaining
initial correlations for the one-particle density matrix (momentum distribu-
tion function) in the linear approximation in the gas density. This equation
describes the evolution process at all times and includes both the quantum
initial correlations and initial correlations caused by interaction between
particles. Then we show how and under which conditions this equation
converts into the quantum Boltzmann kinetic equation.

The paper is organized as follows. We start with re-derivation of TC-
HGME in order to emphasize the main steps leading to this equation and
the formal similarity of the classical and quantum physics cases, and then
to derive the time-convolutionless HGME. Then, after a brief outlining
of the application of TC-HGME to a gas of classical particles consid-
ered in, ref. 6 we turn to the quantum case, which can be formally pre-
sented in exactly the same way as the classical physics case but in terms of
appropriate operators. It allows us to generalize the method of the paper(6)

on the quantum physics case and thus to treat the TC-HGME and
TCL-HGME as the homogeneous generalized master equations retain-
ing initial correlations for the relevant part of a density operator. Then
the TC-HGME is applied to the space homogeneous gas of quantum
particles.
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2. TIME-CONVOLUTION HOMOGENEOUS GENERALIZED MASTER

EQUATION

Let us start from the very beginning with the Liouville–von-Neumann
equation for a distribution function (statistical operator) FN(t) of N (N �
1) particles

∂

∂t
FN(t)=LFN(t). (1)

Here, FN(t) is a symmetric function of N variables xi = (ri ,pi ) (i =
1, . . . ,N) representing the coordinates and momenta of the particles (clas-
sical physics) or a statistical operator (quantum mechanics), which satisfy
the normalization conditions

∫
dx1 . . .

∫
dxNFN(x1, . . . xN , t)=1, T rFN =1, (2)

L is the Liouville operator acting on FN(t) in the case of classical physics
as

LFN(t)={H,FN(t)}P =
N∑

i=1

{
∂H

∂ri

∂FN(t)

∂pi

− ∂H

∂pi

∂FN(t)

∂ri

}
, (3)

where {H,FN(t)}P is the Poisson bracket and H is the Hamilton function
for the system under consideration, while in the quantum physics case L

is the superoperator acting on a statistical operator as

LFN(t)= 1
i–h

[H,FN(t)] , (4)

where [, ] is a commutator and H is the Hamiltonian (for simplicity we
consider the case of a closed isolated system when H does not depend on
time t).

The formal solution to equation (1) is

FN(t)= eL(t−t0)FN(t0), (5)

where FN(t0) is a distribution function (statistical operator) at an ini-
tial moment of time, t0, when the initial condition for the Liouville–von-
Neumann Eq. (1) should be set.
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Employing the projection operator technique(3–5) and applying the
projection operators P =P 2 and Q=Q2 = 1 −P to Eq. (1), it is easy to
obtain the equations for the relevant fr(t)=PFN(t) and irrelevant fi(t)=
QFN(t) parts of FN(t)

∂

∂t
fr(t) = PL[fr(t)+fi(t)], (6)

∂

∂t
fi(t) = QL[fr(t)+fi(t)]. (7)

A formal solution to Eq. (7) has the form

fi(t)=
∫ t

t0

exp[QL(t − t1)]QLfr(t1)dt1 + exp[QL(t − t0)]fi(t0). (8)

Inserting this solution into (6), we obtain the conventional exact
time-convolution generalized master equation (TC-GME) known as the
Nakajima–Zwanzig equation for the relevant part of the distribution func-
tion (statistical operator)

∂

∂t
fr(t) = PLfr(t)+

∫ t

t0

PL exp[QL(t − t1)]QLfr(t1)dt1

+PL exp[QL(t − t0)]fi(t0). (9)

It is important to stress that fr(t) and fi(t0) are the basic quanti-
ties we are dealing with in Eq. (9). All functions of dynamical variables,
the average values of which we can calculate with the help of fr(t) by
multiplying Eq. (9) with the corresponding functions (operators) from the
right and calculating an average value (a trace), are dependent only on
the variables which are not projected off by P (P integrates off all exces-
sive variables in FN(t)). Therefore, if we represent fr(t) and fi(t0) in (9)
as fr(t)=PFN(t) and fi(t0)=QFN(t0), correspondingly, then the projec-
tion operators P and Q in these expressions act only on FN(t) but not
on the functions (if any) to the right of them. This is the essence of the
reduced description method, when, in order to calculate the average values
of the functions dependent on a much smaller number of variables than
the whole distribution function FN(t), we actually need only the reduced
(relevant) distribution function (density matrix) fr(t).

Serving as a basis for many applications, Eq. (9), nevertheless, con-
tains the undesirable and in general non-negligible inhomogeneous term
(the last term in the right hand side of (9)), which depends (through fi(t0))
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on the same large number of variables as the distribution function FN(t0)

at the initial moment does. Therefore, Eq. (9) does not provide for a
complete reduced description of a multi-particle system in terms of rel-
evant (reduced) distribution function. Applying Bogoliubov’s principle of
weakening of initial correlations (allowing to eliminate the influence of
fi(t0) on the large enough timescale, t − t0 � tcor) or using a factorizing
initial condition (RPA),when fi(t0) = QFN(t0) = 0, one may achieve the
above-mentioned goal and obtain the homogeneous GME for fr(t), i.e.
Eq. (9) with no initial condition term. However, in such a way obtained
homogeneous GME is either approximate one and valid only on a large
enough timescale (when all initial correlations vanish) or applicable only
for a rather artificial (actually unreal, as pointed in ref. 2) initial condi-
tions (no correlations at an initial moment of time). Also, it is important
to note, that in order to get rid of dealing with a singled out moment
of time t0, when a distribution function FN(t) is replaced by its relevant
part, Bogoliubov(1) used the limiting procedure t0 →−∞, and thus intro-
duced a special boundary (factorizing) conditions at t0 → −∞ leading to
an irreversibility of the relaxation process.

To treat the inhomogeneous initial correlations term in the right hand
side of Eq. (9) by transferring it to the operator (kernel) acting on the rel-
evant part fr(t), we suggested in ref. 6 to present the initial (irrelevant)
value fi(t0)=QFN(t0) as a following exact identity

fi(t0) = [QFN(t0)]F
−1
N (t0)e

−L(t−t0)(P +Q)eL(t−t0)FN(t0)

= C0 exp[−L(t − t0)][fr(t)+fi(t)]. (10)

Here, we assumed that the inverse operator F−1
N (t0) = [fr(t0) + fi(t0)]−1

exists (see below), used that P +Q=1 and that the backward propagator
of the system is exp[−L(t − t0)] (as it follows from (5)). In (10) the initial
correlation parameter C0 is introduced

C0 = [QFN(t0)]FN
−1(t0)=fi(t0)[fr(t0)+fi(t0)]

−1

= fi(t0)f
−1
r (t0)[1+fi(t0)f

−1
r (t0)]

−1

= (1−C0)fi(t0)f
−1
r (t0), (11)

where the projection operator Q acts only on FN(t0), which is reflected in
comprising QFN(t0) into the parenthesis.

Thus, the additional identity (10) has been obtained by multiplying
the irrelevant part by unity F−1

N (t0)FN(t0) (which implies the existence
of F−1

N (t0)) and inserting the unities exp[−L(t − t0)] exp[L(t − t0)] = 1 and
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P +Q= 1. Therefore, neither divergency (caused by possible vanishing of
FN(t0)) nor indetermination of the 0/0 type (behaviours of the numerator
and denominator in FN(t0)/FN(t0)=1 are similar) may happen. This holds
over all further (identical) manipulations (see below). As it is seen from
(11), the correlation parameter is a series in fi(t0)f

−1
r (t0) and, therefore,

one may only need a formal existence of the function (operator) f −1
r (t0)

(see also (51)), which is invert to the relevant distribution function (sta-
tistical operator) chosen with the help of the appropriate projection oper-
ator P (generally, it may provide some restriction on the class of appro-
priate projectors). The relevant part, which is mainly of interest, is, as a
rule, a vacuum (relatively slowly changing) part of a distribution function
(statistical operator), i.e. the part with no correlations (e.g. a one-particle
distribution function). The discussed issue of the existence of an invert dis-
tribution function does not pose any problem in a system of classical par-
ticles (see ref. 6). In the quantum physics case considered below, the exam-
ple of construction of the appropriate invert operator f −1

r (t0) will be given
(see (54) and (57)). It seems plausible that the invert relevant part of a dis-
tribution function (statistical operator) defined in a pointed above sense
(uncorrelated part) may always be constructed.

As a result of introducing the additional identity (10), we have two
Eqs. (8) and (10), connecting fi(t) with fi(t0). Finding fi(t0) from these
equations and inserting it into (9), we obtain the following exact equation
for the relevant part of a distribution function (statistical operator):

∂

∂t
fr(t)=PLR(t − t0)fr(t)+

∫ t

t0

PLR(t − t0) exp[QL(t − t1)]QLfr(t1)dt1,

(12)

where function R(t − t0) is defined as

R(t − t0) = 1+C(t − t0)= 1
1−C0(t − t0)

,

C(t − t0) = eQL(t−t0)
1

1−C0e
−L(t−t0)eQL(t−t0)

C0e
−L(t−t0), (13)

C0(t − t0) = eQL(t−t0)C0e
−L(t−t0).

We have rederived the TC-HGME (12), obtained in ref. 6, in order to
underline again the main steps leading to this equation and some impor-
tant features of it. This equation holds in both the classical and quan-
tum physics cases if the proper redefinition of the symbols is done and all
(super)operators exist (we will address the latter problem below). We have
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not removed any information while deriving Eq. (12), and, therefore, it is
exact integra-differential equations which accounts for initial correlations
and their dynamics through the modification of the (super)operator (mem-
ory kernel) in GME (9) acting on the relevant part of a distribution func-
tion (statistical operator) fr(t). The obtained exact kernel of TC-HGME
(12) may serve as a starting point for consecutive perturbation expansions.
In many cases such expansions of the homogeneous equations (like (12))
have much broader range of validity than that for the inhomogeneous
ones (like (9)), when the expansions of the functions (fr , fi), rather than
equation, are involved (see also ref. 1).

However, the problem of the existence (convergency) of R(t − t0) may
be raised. The function R(t − t0) behaves properly at all times. Moreover,
the expansion of the kernel of (12) may result in canceling the pole in
function R(t − t0). In the classical physics case it has been shown in ref. 6
in the linear approximation on the small density for a dilute gas of parti-
cles (see Eq. (32) in ref. 6)). As we will see below, the same is also valid
in the case of quantum particles. In such cases there is no problem with
the existence of R(t − t0).

3. TIME-CONVOLUTIONLESS HOMOGENEOUS GENERALIZED

MASTER EQUATION

Now, let us turn to the case of the so called time-convolutionless
(time-local) GME. It is believed that such TCL-GME can be more easily
solved and be more convenient for studying the non-Markovian processes
than the integral time-convolution GME (9) (see refs. 7,9,10).

Using the identity FN(τ) = exp[−L(t − τ)][fr(t) + fi(t)], we turn Eq.
(8) into the form

fi(t)= [1+A(t − t0)]−1 [−A(t − t0)fr(t)+ eQL(t−t0)fi(t0)
]
,

A(t − t0)=− ∫ t−t0
0 eQLτQLPe−Lτ dτ = eQL(t−t0)Qe−L(t−t0) −Q.

(14)

Inserting Eq. (14) for fi(t) into Eq. (6), we get the TCL-GME(9,10)

∂

∂t
fr(t)=PL [1+A(t − t0)]

−1
[
fr(t)+ eQL(t−t0)fi(t0)

]
, (15)

which contains the undesirable inhomogeneous initial condition term ∝
fi(t0).
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Solving Eqs. (14) and (10), we get for fi(t0)

fi(t0)=χ−1C0e
−L(t−t0) (1+A(t − t0))

−1 fr(t), (16)

where

χ−1 =
[
1−C0e

−L(t−t0) (1+A(t − t0))
−1 eQL(t−t0)

]−1
. (17)

The inverse operator (17), needed for obtaining fi(t0) from Eq. (16), is
defined by expanding it into the series in the term ∝C0. At t = t0, A(t −
t0)=0 and there is no singularity at the initial moment of time if |C0|<1.
From the existence of (1+A(t − t0))

−1(9,10) it follows that χ−1 will exist at
any time if |C0|<1. As for the function R(t − t0) (13) in TC-HGME (12),
an expansion in some small parameter may result in canceling the pole in
(17) and, therefore, the condition |C0|<1 may be not necessary.

Inserting Eq. (16) into Eq. (15) and using (17), we obtain a desired
time-convolutionless (time-local) homogeneous generalized master equa-
tion (TCL-HGME) for the relevant part of the distribution function (sta-
tistical operator) fr(t)

∂

∂t
fr(t)=PL [1+A(t − t0)]

−1
{

1−C0(t − t0) [1+A(t − t0)]
−1
}−1

fr(t).

(18)

Based on the above mentioned arguments, one may expect that all oper-
ators entering Eq. (18) exist (more attention to this issue will be paid in
the next publications).

Thus, using the introduced identity (10), we have transferred the inhomo-
geneous initial correlations term of Eq. (15) into the operator acting on the
relevant part of a distribution function (statistical operator). Equation (18)
is exact homogeneous time-local equation for the relevant part of a distribu-
tion function (statistical operator) which accounts for initial correlations via
the time-dependent parameter of initial correlations C0(t − t0) defined by (13).
This equation is expected to work on any timescale and describe the entire evo-
lution process. It may appear more convenient for studying the non-Markovian
processes than the time-convolution HGME (12).

4. THE CLASSICAL PHYSICS CASE

How the proposed approach works for the case of a homogeneous
dilute gas of N � 1 interacting classical particles was demonstrated in
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ref. 6. In this case, the Liouville operator L may be presented as

L=L0 +L
′

,

L0 =
N∑

i=1
L0

i ,L
0
i =−vi ·∇i , vi = pi

m
, ∇i = ∂

∂xi

,

L
′ =

N∑
i<j=1

L
′
ij , L

′
ij = (∇iVij ) ·

(
∂

∂pi

− ∂

∂pj

)
,

(19)

where L0 corresponds to the kinetic energy of particles with the mass m,
and L

′
describes the interaction between particles with the pair interaction

Vij =V (|xi −xj |).
By selecting the projection operator in the form

P =
[

N∏
i=2

f1(xi)

]
1

V N−1

∫
dx2 . . .

∫
dxN, (20)

where f1(xi)=f1(xi, t0) is the one-particle distribution function

f1(xi, t)=V

∫
dx1 . . .

∫
dxi−1

∫
dxi+1 . . .

∫
dxNFN(x1,... ,xN , t), (21)

taken at t = t0, and V is the volume of the system, we choose the relevant
part of the N -particle distribution function as

fr(t)=PfN(t)=
[

N∏
i=2

f1(xi)

]
f1(xi, t). (22)

Here, fN(t) = V NFN(t) is the N -particle distribution function satisfying
the same Liouville equation (1) and defined in accordance with the follow-
ing definition for the s-particle (s � N ) distribution function

fs(x1, . . . , xs, t)=V s

∫
dxs+1 . . .

∫
dxNFN(x1, . . . , xN , t), (23)

which satisfies the normalization condition

∫
dx1 . . .

∫
dxsfs(x1, . . . , xs, t)=V s. (24)
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The irrelevant part of the N -particle distribution function at t0,
fi(t0)=fN(t0)−fr(t0), may be always represented by the following cluster
expansion

fi(t0)=
N∑

i<j=1

g2(xi, xj )

N−2∏
k �=i,j

f1(xk)+
N∑

i<j<k=1

g3(xi, xj , xk)

N−3∏
l �=i,j,k

f1(xl)+ . . . ,

(25)

where
∏N−2

k �=i,j f1(xk) and
∏N−3

l �=i,j,k f1(xl) stand for the products of N − 2

and N − 3 one-particle distribution functions with k �= i, j and l �= i, j, k,
respectively, whereas g2(xi, xj ) and g3(xi, xj , xk) are the irreducible two-
particle and three-particle correlation functions (further terms in (25) are
defined in the same way).

Using these definitions, the following homogeneous equation for a
one-particle momentum distribution function f1(xi, t) = f1(pi , t) retaining
initial correlations was derived in ref. 6 from TC-HGME (12) for the space
homogeneous case in the linear approximation on the small density of
particles parameter γ

∂

∂t
f1(p1, t) = n

∫
dx2L

′
12G12(t)f1(p2)f1(p1, t)

+n

∫
dx2

∫ t

0
dt1L

′
12[1+G12(t)]e

L12t1L
′
12f1(p2)f1(p1, t − t1),

γ = r3
0n�1. (26)

Here, r0 is the effective radius of inter-particle interaction, n = N
V

is the
particles’ density, t0 =0 is selected as the initial moment of time (Eq. (12)
is valid for any t0), L12 =L0

12 +L
′
12 is the two-particle Liouvillian (19) Lij

(i =1, j =2), and

G12(t) = R12 −1

= eL12t
g2(x1, x2)

f1(p1)f1(p2)
e−L12t (27)

is the parameter of initial correlations in the linear in γ approximation
which is defined by the time evolution of a two-particle correlation func-
tion. It is interesting to note that the expression like (27) appears as an
additional term in the (correlation) entropy caused by two-particle correla-
tion function and obtained by means of quasi-equilibrium statistical oper-
ator (see, e.g. ref. 8). This additional contribution to entropy is essential
when a two-particle correlation function damps slowly.
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Equation (26) is a new equation for a one-particle distribution func-
tion obtained from TC-HGME (12) in the linear approximation in n which
accounts for both initial correlations and collisions in this approximation
exactly. First term in the right-hand side of this equation (linear in L

′
12) is

exclusively defined by initial correlations evolving with time. Initial correla-
tions also modify the collision integral (second term in the right-hand side of
this equation). It contains, except the term related to an interaction between
particles (described by Liouvillian L

′
12), also time-dependent initial correla-

tions described by two-particle correlation function (27)). Evolution in time
of initial correlations as well as of the collision term is defined by the exact
two-particle propagator only, and in this sense Eq. (26) is closed. This equa-
tion describes the entire evolution process and is expected to switch from
initial (reversible) regime into the kinetic (irreversible) one, automatically. It
was shown in ref. 6 that Eq. (26) converts on the appropriate timescale into
the conventional Boltzmann equation if all correlations (initial and caused
by collisions) damp with time.

5. THE QUANTUM CASE

Let us now test the general scheme outlined in Section 2 by applying
it to the system of interacting quantum particles. In the quantum physics
case the derived HGMEs hold in the forms obtained above but the Liou-
ville operator L in Eq. (1) (and elsewhere) as well as the operator exp(Lt)

are now the superoperators acting according to (4) on any operator A(t)

(particularly on the statistical operator FN(t) of N interacting quantum
particles) as

LA(t)= 1
i–h

[H,A(t)], eLt1A(t)= e
1

i
–h

Ht1
A(t)e

− 1

i
–h

Ht1
, (28)

respectively. Accordingly, Eqs. (12) and (18) for the relevant part of the
statistical operator fr(t)=PFN(t) hold with the appropriate redefinitions
of the symbols and operations used in these equations. The order of oper-
ators in these equations also matters.

Let us consider the quantum physics case in more detail. In the space
representation the system of N quantum particles is described by the
density matrix FN(r1, . . . , rN, r

′
1, . . . , r

′
N, t). This matrix should satisfy the

symmetry conditions which reflect the statistics of the particles under con-
sideration, i.e.

PijFN =FNPij = θFN,

θ =±1,
(29)
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where Pij is the operator of transmutation of any two variables ri and
rj , when it stands to the left of FN , or of r

′
iand r

′
j , when it acts from

the write side of FN (this rule holds for any operators acting on the
matrixes). The sign plus is applicable for bosons and minus should be used
for fermions.

We will focus on the derivation of the evolution equation for a one-
particle density matrix f1(r1, r′

1, t), which is defined according to the fol-
lowing definition of the s-particle (s � N) density matrix

fs(r1, . . . , rs , r
′
1, . . . , r

′
s , t)=V sT r(s+1,... ,N)FN(r1, . . . , rN, r

′
1, . . . , r

′
N, t),

(30)

where T r(s+1,... ,N) denotes the trace taken over the coordinates of N–s

particles (s +1, . . . ,N). From the normalization condition (2) T rFN =1 it
follows that 1

V
T rf1 =1.

It is convenient to introduce the following projection operator (com-
pare with the definition (20))

P =
[

N∏
i=2

f1(ri , r′
i )

]
1

V N−1
T r(2,... ,N), (31)

where f1(ri, r
′
i )=f1(ri, r

′
i , t0) is the one-particle density matrix taken at the

initial moment of time t0. Therefore, the chosen relevant density matrix
under consideration is (in accordance with the definition (30) for the
N -particle density matrix fN =V NFN )

PfN(t)=fr(t)=
[

N∏
i=2

f1(ri , r′
i )

]
f1(r1, r′

1, t). (32)

As it is seen from Eq. (32), the selected relevant part of the N -
particle density matrix does not contain any correlations. In order to
define the irrelevant part of the density matrix fi(t0) = (1 − P)fN(t0),
which enters Eqs. (12) and (18) and comprise all initial correlations, we
have also to take into account the quantum correlations arising due to
the symmetry condition (29). These correlations exist independently of
the interaction between particles, which we introduce by means of the
following Hamiltonian
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H = H 0 +H
′
,

H 0 = ∑N
i=1 Ki, H

′ =∑N
i<j=1 �i,j ,

Ki = −–h2

2m
�2

ri , �i,j =�(|ri − rj |).
(33)

Thus, fN(t0)= fr(t0)+ fi(t0) may be presented in the form of the cluster
expansion with

fr(t0)=
N∏

i=1

f1(i), (34)

and

fi(t0)=
N∑

i<j=1

g̃2(i, j)

N−2∏
k �=i,j

f1(k)+
N∑

i<j<k=1

g̃3(i, j, k)

N−3∏
l �=i,j,k

f1(l)+ . . . ,

(35)

where we have used the short notation f1(i) = f1(ri , r
′
i ) (i.e. i = ri , r

′
i , i =

1, . . . ,N ) and, e.g.
∏N−2

k �=i,j f1(k) stands for the product of N −2 one-parti-

cle functions f1(k) with k taking values 1, . . . ,N but k �= i, j . A two-parti-
cle g̃2(i, j) and a three-particle g̃3(i, j, k) correlation functions are defined
as (the correlation functions for more particles may be written down in the
same way)

g̃2(i, j) = θPijf1(i)f1(j)+g2(i, j),

g̃3(i, j, k) = (PijPjk +PijPik)f1(i)f1(j)f1(k)+ (θPik + θPjk)g2(i, j)f1(k)

+(θPij + θPik)g2(j, k)f1(i)+ (θPij + θPjk)g2(i, k)f1(j) (36)

+g3(i, j, k).

The terms in the right-hand sides of Eq. (36) with one, two, etc. permuta-
tion operators, Pij , represent a two-, three-particle, etc. quantum correla-
tions emerging due to the proper symmetry properties of fN(0) guaranteed
by the symmetrization operators, e.g.

f2(i, j)= θPijf2(ri , rj , r
′
i , r′

j ). (37)

The irreducible two-, three-, etc. correlation functions, g2(i, j), g3(i, j, k),
etc., are caused by the interaction between particles, �i,j , and are
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proportional to an interaction parameter ε in some power. Note, that in
contrast to the classical physics case (see (25)), each correlation functions
(36) contains correlations of all possible orders in ε, e.g. g̃2(i, j) includes
two-particle quantum correlations (existing even in the absence of inter-
action, when ε = 0) and two-particle correlations of the first order in ε

(g2(i, j)). The same is valid for g̃3(i, j, k), which contains a three-particle
correlations of the zero, first and second (g3(i, j, k)) orders in ε.

The following useful relations hold for the permutation operators

PijPjk = PikPij ,

PjkPij = PijPik.
(38)

Let us now derive the evolution equation for a gas of interacting
quantum particles in the lowest (first) order in the small density of par-
ticles parameter n. The corresponding dimensionless small parameter is

γ = r3
0n∼ tcor/trel �1. (39)

We will use the TC-HGME given by Eqs.(12) and (13) with appropriate
redefinitions of the symbols, as it was mentioned above.

The Liouville (super)operator L=L0 +L
′
, corresponding to the Ham-

iltonian (33), is easily defined by Eq. (28) as

L0 =
N∑

i=1

L0
i ,L

0
i = 1

i–h

(
−

–h2

2m

)(
∇2

ri −∇2
r′
i

)
,

L
′ =

N∑
i<j=1

L
′
ij ,L

′
ij = 1

i–h

[
�(|ri − rj |)−�(|r′

i − r
′
j |)
]
, (40)

where we have used the abovementioned rule, that an operator standing
on the right side (in the commutator) acts on the primed variables.

Using the definitions (40), one can easily show that the following rela-
tions hold (similar to the classical physics case)

T r(i)L
0
i ϕN(1, . . . , i, . . . ,N)=0,

T r(i,j)L
′
ij ϕN(1, . . . , i, . . . , j, . . . ,N)=0,

(41)

where ϕN(1, . . . , i, . . . ,N) is some matrix, defined for the N -particle sys-
tem, which in the space representation takes the form ϕN(1, . . . , i, . . . ,N)=
ϕN(r1, . . . , ri , . . . , rN, r

′
1, . . . , r

′
i , . . . , r

′
N) and possesses the necessary

boundary conditions.
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Therefore, using the projection operator (31) and the relevant density
matrix (32), the first two terms in TC-HGME (12), P(L0 +L

′
)fr(t) (which

coincide with those in TC-GME (9)), may be presented as follows

PL0fr(t) =
[∏N

i=2 f1(i)
]

1
i–h

[
−–h2

2m

(
∇2

r1
−∇2

r′
1

)]
f1(r1, r

′
1, t),

PL
′
fr(t) =

[∏N
i=2 f1(i)

]
n

i–h
∫

dr2[�(|r1 − r2|)
−�(|r′

1 − r2|)]f1(r2, r2)f1(r1, r
′
1, t)}.

(42)

To simplify the derivation, we will restrict ourself to the space homo-
geneous case, when all matrixes are invariant under translations and,
particularly, the matrix f1(ri , r

′
i ) should be of the form

f1(ri , r
′
i , t)=f1(ri − r

′
i , t). (43)

Then, it is easy to see that for functions (43), H 0 commutes with fr(t) and
Eq. (42) vanish, i.e.

L0fr(t)=0, PL
′
fr(t)=0. (44)

Also, in this space homogeneous case for any matrix ϕN(1, . . . ,N)

PL0ϕN(1, . . . ,N)=0. (45)

Let us now consider the terms in TC-HGME (12) caused by ini-
tial correlations. It is worth noting, that in the considered case of identi-
cal interacting quantum particles it is impossible to simply disregard the
inhomogeneous term in the exact TC-GME (9) (assuming that correla-
tions damp with the distance between particles) due to always existing (at
any distances) quantum initial correlations (see (36)). Bogoliubov(1) tack-
led this problem by introducing a special boundary (initial) condition to
the BBGKY chain at t0 → −∞ implying that at this limiting moment of
time the particles are located at distances beyond the correlation radius
r0, which means that correlation functions in (36), g2(i, j), g3(i, j, k), etc.,
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caused by interaction between particles (and proportional to some power
of ε), vanish, and

lim
t0→−∞fi(t0)=γN

N∏
i=1

f1(i), (46)

where

γN = (1+ θP1N + . . .+ θPN−1,N ) . . . (1+ θP12) (47)

is the symmetrization operator for N particles. Therefore, in the Bogo-
liubov approach, the multi-particle density matrix at t0 →−∞ is the prop-
erly symmetrized product of one-particle density matrixes (compare with
(34)–(36)). As in the classical physics case, this boundary condition intro-
duces irreversibility into an evolution of the system and thus allows for
obtaining the quantum kinetic equations.(11) Also, as in the case of a
dilute gas of classical particles, in order to obtain the closed kinetic equa-
tion for a one-particle density matrix, Bogoliubov used the specific form of
time-dependence of the multi-particle density matrix (valid only at t − t0 �
tcor), i.e. he assumed that on this timescale the dependence on time of
the multi-particle density matrices is defined by the time-dependence of an
one-particle density matrix.

In this paper we are not using any of the abovementioned Bogo-
liubov’s assumptions. Thus, let us consider the (super)operator (see (13))

C(t)=R(t)−1= eQLt 1
1−C0e

−LteQLt
C0e

−Lt (48)

defining the influence of initial correlations in Eq. (12) on the evolution
process (hereinafter we put t0 = 0, because the HGMEs are valid for any
initial moment t0). In order to expand exponential (super)operators in a
power series, we will use the following relation valid for any (super)oper-
ators A and B

e(A+B)t = eAt +
∫ t

0
dτeA(t−τ)Be(A+B)τ . (49)

Making use of (49) and expanding (48) in PL0 and QL
′
, it is seen

that all terms with PL0 vanish due to Eq. (45) and, therefore, all QL in
(48) may be replaced by L0 + QL

′
. Taking into account that the terms

containing PL
′

result in the expressions proportional to at least the first
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power of n (see, e.g.(42)) and looking for the lowest (first) order approx-
imation in n of Eq. (12), we can substitute Q = 1 − P in (48) with unity
and simplify it to

C(t)= eLt 1
1−C0

C0e
−Lt . (50)

Using expression (11) for C0, we have

1
1−C0

C0 =fi(0)f −1
r (0). (51)

This is a remarkable result showing that in this approximation there is
no problem with the existence (convergence/invertability) of R(t) (13) (the
same has been shown for the classical physics case in ref. 6). In connec-
tion with that it is worth reminding that if in some part of the defini-
tion space fr(0) goes to zero, so should fi(0) (at the same rate or more
promptly than the relevant part). It follows from the possibility of break-
ing the statistical operator into the uncorrelated (fr ) and correlated (fi)
parts (see (34)–(36)), which in turn caused by the fact that if an interaction
between particles is switched off (ε =0), the statistical operator should be
given by symmetrized product of one-particle operators. Moreover, in the
equations for the relevant part of statistical operator obtained below, as
a result of approximation (51), the factor fi(0)f −1

r (0) is always multiplied
by fr(0) (see (69) below and take into account that in the approximation
under consideration the relevant part changes slowly). This fact addition-
ally guarantees an absence of any divergencies (in other words, any manip-
ulations with initial condition term should result in terms behaving like
fi(0) in accordance with the identity (10)).

Now, it is necessary to define f −1
r (0). In the space homogeneous case

under consideration, it is convenient to work in the momentum represen-
tation. The relation between the space and momentum representations for
a one-particle density matrix of interest is

f1(r, r
′
, t) = 1

(2π–h)3

∫
f1(p,p

′
, t)eipr/–he−ip

′
r
′
/–hdpdp

′
,

f1(p,p
′
, t) = (2π–h)3w(p, t)δ(p−p

′
),

(52)

where a function w(p) (with dimension [p−3]) is normalized to unity and
corresponds to a classical momentum distribution function. According to
the definition
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∫
f1(p,p

′′
, t)f −1

1 (p
′′
,p

′
, t)dp

′′ = δ(p−p
′
), (53)

we may take for f −1
1 (p,p

′
) the following matrix

f −1
1 (p,p

′
, t)= (2π–h)−3w−1(p, t)δ(p−p

′
). (54)

Note that the δ-functions in (52)–(54) (related to the fact that a one-
particle distribution function is diagonal in the space homogeneous case)
always stay under the integrals or are divided out.

In correspondence with (52) and (54), an invert one-particle matrix in
the space representation may be defined as

f −1
1 (r, r

′
, t) = 1

(2π–h)3

∫
f −1

1 (p,p
′
, t)eipr/–he−ip

′
r
′
/–hdpdp

′

= 1
(2π–h)6

∫
w−1(p, t)eip(r−r

′
)dp. (55)

It satisfies the necessary relation
∫

f1(r, r
′′
, t)f −1

1 (r
′′
, r

′
, t)dr

′′ = δ(r − r
′
). (56)

Now,we may define an operator, invert to the relevant operator (34),
as following

f −1
r (0)=

N∏
i=1

f −1
1 (i), (57)

because, due to (53) and (56),

[fr(0)f −1
r (0)]=

N∏
i=1

I (i). (58)

Here and further (i) stands for (ri , r
′
i ) or (pi ,p

′
i ) depending on the repre-

sentation used, and I (i) is the unity matrix in the space of i-particle

I (ri , r
′
i ) = δ(ri − r

′
i ),

I (pi ,p
′
i ) = δ(pi −p

′
i ),

(59)

in the space and momentum representations, respectively.
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Applying the introduced definitions for invert matrixes and using
Eq. (35) for the irrelevant density matrix, the correlation parameter (51)
may be rewritten in the following way

fi(0)f −1
r (0) =

N∑
i<j=1

g̃(i, j)f −1
1 (i)f −1

1 (j)

N−2∏
k �=i,j

I (k)

+
N∑

i<j<k=1

g̃(i, j, k)f −1
1 (i)f −1

1 (j)f −1
1 (k)

N−3∏
l �=i,j,k

I (l)+ . . . ,

(60)

where, e.g. the two-particle part of (60), according to the expressions for
correlation functions (36), is

g̃(i, j)f −1
1 (i)f −1

1 (j)= θPij +g(i, j)f −1
1 (i)f −1

1 (j), (61)

and the matrix elements of the permutation operator Pij are defined in the
space and momentum representations as

Pij (ri , rj , r
′
i , r

′
j ) = δ(ri − r

′
j )δ(rj − r

′
i ),

Pij (pi ,pj ,p
′
i ,p

′
j ) = δ(pi −p

′
j )δ(pj −p

′
i ).

(62)

Let us consider the additional (to the flow) term in TC-HGME (12),
F(t) = PL

′
C(t)fr(t), caused by initial correlations, in the linear approx-

imation in n. Using (50), (51) and (60), (61), one may obtain in this
approximation

F(t) = PL
′
eLt 1

1−C0
C0e

−Ltfr(t)

=
[

N∏
i=2

f1(i)

]
n

i–h
T r(2)L

′
12e

− i
–h

(H 0
12+H

′
12)t [θP12

+g(1,2)f −1
1 (1)f −1

1 (2)]e
i
–h

(H 0
12+H

′
12)t f1(2)f1(1, t). (63)

Deriving (63), we have taken into consideration that each additional inte-
gration over the coordinate or momentum space adds an additional power
of n and, therefore, in the linear approximation in n all formulae can con-
tain no more than one integration (as in (63)). Thus, Eq. (63) is defined
only by the two-particle dynamics described by the Hamiltonian H12 =
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H 0
12 +H

′
12 (and the corresponding Liouvillian L12 =L0

12 +L
′
12). It is worth

noting that (63) is different from the corresponding additional (to flow)
term (caused by initial correlations) obtained in ref. 6 for the classical
physics case: except a two-particle correlation function, Eq. (63) contains
a symmetrization operator P12 responsible for quantum correlations.

Taking into account (62) and invariance of the Hamiltonian H12 with
regard to renaming the particles, i.e. H12(p1,p2,p

′
1,p

′
2)=H12(p2,p1,p

′
2,p

′
1),

it may be shown that in the operator form it looks like (see, e.g. ref. 12)

P12H12P
−1
12 =H12 (64)

(i.e. a symmetrization operator commutes with the Hamiltonian) and,

therefore, e
− i

–h
(H 0

12+H
′
12)tP12e

i
–h

(H 0
12+H

′
12)t =P12. Now, it is easy to show that

the first term in (63), caused by the symmetrization operator P12, vanishes
in the space homogeneous case (for non-symmetrized fr(t) it is demon-
strated by Eq. (44)). Thus,

PL
′
12P12fr(t) = n

[
N∏

i=2

f1(i)

]∫
dr2

1
i–h

[�(|r1 − r2|)

−�(|r′
1 − r2|)]f1(r1 − r2)f1(r2 − r

′
1, t)=0. (65)

That may be easily proven, if we substitute the integration variable r2 in
(65) by ρ = r1 − r2 and ρ

′ = r2 − r
′
1 in the first and second integrals, respec-

tively, and take into consideration, that in the adopted approximation (first
order in n) the time-dependence of an one-particle density matrix may be
disregarded due to the fact that the change with time is described by the
(super)operator which is already of the first order in n for the space homo-
geneous system.

Thus, the contribution of initial correlations to the flow term of
Eq. (12) in the first order in n and for the space homogeneous system is

PL
′
C(t)fr(t)=

[
N∏

i=2

f1(i)

]
nT r(2)L

′
12G

q

12(t)f1(2)f1(1, t), (66)

where

G
q

12(t)= e
− i

–h
H12t

g(1,2)f −1
1 (1)f −1

1 (2)e
i
–h

H12t (67)
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is a time-dependent (quantum) two-particle correlation function. This
result is similar to that obtained in ref. 6 for the classical physics case (see
also (26) and (27)): initial correlations lead to the appearance of the addi-
tional, linear in interaction between particles (H

′
12), term which is defined

by the evolution with time of a two-particle correlation function. More-
over, this result is closed in the sense that the time-evolution is also com-
pletely defined by a two-particle dynamics with the Hamiltonian H12.

The collision term of equation (12) in the adopted approximation
may be obtained in the same way. Accounting for Eqs. (44), (45), (49)–
(51), (60), (61), (64) and remembering that any additional power of PL

′

and any additional integration (taking a trace) over the coordinate or
momentum space adds an additional power of density n, it is not difficult
to show that in the linear approximation in n the collision integral of (12)
reduces to

K(t) =
[

N∏
i=2

f1(i)

]
n

∫ t

0
dt1T r(2)L

′
12

[
1+ θP12 +G

q

12(t)
]
eL12t1

×L
′
12f1(2)f1(1, t − t1). (68)

This result is different from that obtained in ref. 6 for the classical physics
case due to the presence of quantum correlations stipulated by a symme-
trization operator P12.

Collecting the obtained results (formulae (66) and (68)) and account-
ing for the definition of the relevant statistical operator (32), we get from
the TC-HGME (12) the following equation for a one-particle density
matrix in the linear approximation in n and for the space homogeneous
case

∂

∂t
f1(1, t) = nT r(2)L

′
12G

q

12(t)f1(2)f1(1, t)

+n

∫ t

0
dt1T r(2)L

′
12

[
1+ θP12 +G

q

12(t)
]
eL12t1L

′
12f1(2)f1(1, t − t1).

(69)

Equation (69) is the central result of this section. We have obtained
a new closed homogeneous integra-differential equation for a one-particle
density matrix retaining initial correlations which is valid on any timescale
(i.e. we may use Eq. (69) for considering all stages of evolution of a one-
particle density matrix). No approximation like the Bogoliubov principle of
weakening of initial correlations (valid only on a large timescale t − t0 � tcor)
has been used for deriving equation (69). This equation is exact in the linear
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approximation in n and, therefore, accounts for initial correlations and col-
lisions in this approximation exactly. The first term in the right-hand side of
(69), linear in interaction (L

′
12), is defined by initial correlations caused by

interaction between particles (this term is absent if we apply the boundary
condition (46)). Initial correlations, both quantum and caused by interac-
tion, also modify the second (collision) term of (69). Note, that the sym-
metrization operator θP12 (accounting for the particles’ statistics) appears
in this term as a result of a regular procedure outlined above but not as a
result of using the boundary condition (46), as it is the case when one applies
the Bogoliubov principle of weakening of initial correlations.(1) Also, when
this principle is applied, the correlation function G

q

12(t) does not show up
in the second term of the right-hand side of (69)). Evolution with time in
(69) is completely defined by the exact two-particle dynamics, described by
the Hamiltonian H12 (which is quite natural for the considered linear in n

approximation), and in this sense this equation is closed.

6. CONNECTION TO THE QUANTUM BOLTZMANN EQUATION

Equation (69) is not a kinetic equation in the conventional sense
because it is time reversible (if the correlation function g2(i, j)f −1

1 (i)

f −1
1 (j) does not change when the particles’ velocities are reversed). Thus,

one of the possibilities to secure a time-asymmetric behaviour may be the
special choice of an initial condition (e.g. the factorizing one, like (46)).

It is instructive to consider the transition from Eq. (69) to an irrevers-
ible kinetic equation describing the evolution, say, into the future (t > 0).
As it is seen from (69), in order to enter the kinetic (irreversible) stage of
the evolution, the reversible terms caused by initial correlations, G

q

12(t),
should vanish on some timescale. Let us suppose that this is the case,
when t � tcor, i.e.

G
q

12(t)=0, t � tcor. (70)

Here, the correlation time may be estimated as tcor ∼ r0/v, where r0 is the
radius of inter-particle interaction and v is a typical mean particle velocity.
Thus, if a dynamics of the system of particles under consideration is such
(e.g. a mixing ergodic flow) that all initial correlations caused by inter-
particle interaction vanish at the timescale t � tcor, as it is supposed by
condition (70), then Eq. (69) reduces to

∂
∂t

f1(1, t) = n
∫ t

0 dt1T r(2)L
′
12e

L12t1L
′
12(1+ θP12)f

12
r (t − t1),

f 12
r (t − t1) = f1(2)f1(1, t − t1), t � tcor,

(71)



266 Los

where (64) is also taken into account. Making use of the definitions (28),
this equation may be rewritten as

∂f1(1, t)

∂t
= − n

–h2

∫ ∞

−∞
dE

∫ ∞

−∞
dE

′

×
∫ t

0
dt1e

1

i
–h

(E−E
′
)t1

T r(2)�12(E,E
′
, t − t1), t � tcor,

�12(E,E
′
, t − t1) =

[
H

′
12, δ(E −H12)

[
H

′
12, (1+ θP12)f

12
r (t − t1)

]
(72)

×δ(E
′ −H12)

]
.

In the adopted first approximation in n, we may consider f 12
r (t − t1) under

the integral in the zero approximation in n, in which it does not change
with time. Thus, one can approximate the two-particle relevant part of a
density matrix under the integral in (72) as f 12

r (t − t1) = f1(1, t)f1(2, t).
Now, the integral in (72) over t1 may be calculated. Note, that for finite t

Eq. (72) is time reversible and integral over t1 is a periodic function of
t for a finite volume of a system V . This equation becomes time irre-
versible if the upper limit of integral may be extended to infinity, t →∞,
and this limiting value of the integral over t1 exists. However, this lim-
iting value of the integral may evidently exist only for a large enough
volume of the system under consideration. In other words, in order to
exclude the long Poincare’s cycles, the thermodynamic limiting procedure
(V →∞,N →∞, n= N

V
−finite) is needed before calculating the integral. If

the mentioned limiting value of the integral exists, then the integral may
be considered in the Abel’s sense, i.e.

lim
t→∞

∫ t

0
dt1e

1

i
–h

(E−E
′
)t1

= lim
ε→0+

lim
t→∞

∫ t

0
dt1e

−εt1e
1

i
–h

(E−E
′
)t1 =−i–h

Pr
E −E

′ +π–hδ(E −E
′
), (73)

where the order of taking limits matters and Pr is a symbol of taking
a principal value of an integral. The procedure given by (73) may also
be considered as a coarse-graining (smoothing) procedure over the coarse-
graining time interval t . This interval, which can be interpreted as the
“observation time” (see, for example, ref. 13), should be, naturally, much
larger than tcor and much less than the relaxation time trel

tcor �t � trel. (74)
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The existing of interval t is guaranteed by the condition (39). Using (73),
Eq. (72) may be rewritten as following

∂f1(1, t)

∂t
= −πn

–h

∫
dET r(2)�12(E, t), t � trel

�12(E, t) =
[
H

′
12, δ(E −H12)

[
H

′
12, (1+ θP12)f1(1, t)f1(2, t)

]
δ(E −H12)

]
.

(75)

Obtaining (75), we have taken into account that Eq. (72) contains only the
diagonal matrix element �12(E,E

′
,p1,p2,p1,p2, t) as it should be because

of taking a trace over p2 and because the left hand side of (72) is diago-
nal relatively to p and p

′
(see (52)). The latter property of T r(2)�12(E, t)

may also be proven explicitly. This diagonal element possesses the sym-
metry property �12(E,E

′
,p1,p2,p1,p2, t)=�12(E

′
,E,p1,p2,p1,p2, t) and,

therefore, the imaginary (principal) part of the integral over E and E
′

vanishes, as it follows from (72) and (73). The mentioned symmetry of
�12(E,E

′
,p1,p2,p1,p2, t) (72) is a consequence of the symmetry of matrix

elements of H 0
12 and H

′
12 (and, therefore, of H12). The latter symme-

try follows from the definition (33) and means that H 0
12(p1,p2,p

′
1,p

′
2) =

H
0

12(p
′
1,p

′
2,p1,p2) and H

′
12(p1,p2,p

′
1,p

′
2)=H

′
12(p

′
1,p

′
2,p1,p2), where

H 0
12(p1,p2,p

′
1,p

′
2) = [K(p1)+K(p2)] δ(p1 −p

′
1)δ(p2 −p

′
2), K(pi )= p2

i

2m
,

H
′
12(p1,p2,p

′
1,p

′
2) = 1

(2π–h)3 ν(p1 −p
′
1)δ(p1 +p2 −p

′
1 −p

′
2),

ν(p) = ∫
�(|r|) exp(− i

–hpr)dr,ν(p)=ν(−p).

(76)

The (operator) δ-function with some Hamiltonian H (entering Eq.
(75) with a two-particle Hamiltonian H12) may be expressed via the imag-
inary part of Green’s function G(E):

δ(E −H) =∓ 1
π

ImG(E±), G(E±)= 1
E±−H

,

E± =E ± iε, ε =0+.
(77)

On the other hand, there is the so called optical theorem relating δ(E−H)

(the imaginary part of Green’s function G(E±) for the full Hamiltonian
H =H 0 +H

′
) and the interaction Hamiltonian H

′
to δ(E −H 0) (the imag-

inary part of Green’s function G0(E±) = (E± − H 0)−1) and the T -matrix
(see, e.g. ref. 8):

H ′δ(E −H)H
′ =T +δ(E −H 0)T − =T −δ(E −H 0)T +, (78)
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where the T -matrix is defined as

T ± =T (E±)=H
′
G(E±)G0−1

(E±), (79)

and satisfies the equations

T ± =H
′ +H

′
G0(E±)T ± =H

′ +T ±G0(E±)H
′
. (80)

The relations (77)–(79) allow for converting �12(E, t) (75) into the follow-
ing form

�12(E, t)=
[
H

′−1

12 , T +
12δ(E−H 0

12)T
−

12

[
H

′−1

12 , (1+θP12)f1(1, t)f1(2, t)
]
T −

12δ(E−H 0
12)T

+
12

]
,

(81)

where T ±
12 refers to the T -matrix (79) defined for the two-particle Hamil-

tonian H12 =H 0
12 +H

′
12. Using (80), it is not difficult to show that

T −
12

[
H

′−1

12 , (1+ θP12)f1(1, t)f1(2, t)
]
T −

12=−[T −
12, (1+ θP12)f1(1, t)f1(2, t)

]
,

(82)

where we have also taken into account that G0
12(E

±)= (E± −H 0
12)

−1 com-
mutes with (1 + θP12)f1(1, t)f1(2, t) for the space homogeneous case (see
also (44)).

Using (82), (81), (80), diagonality of G0(E±) and of both sides of
Eq. (75) in the momentum representation, we may transform this equation
into the following form

∂f1(1, t)

∂t
=−πn

–h

∫
dET r(2)

[
T +

12, δ(E−H 0)[T −
12, (1+θP12)f1(1, t)f1(2, t)]δ(E −H 0)

]
.

(83)

To calculate the trace (integral over p2) in (83), one need to have the
matrix elements of T -matrix in the p-representation. Iterating Eq. (80) and
calculating the matrix elements in the momentum representation, one may
show that the T12-matrix (describing the particles’ collisions) secures the
momentum conservation, i.e. T ±

12(p1,p2,p
′
1,p

′
2) ∼ δ(p1 + p2 − p

′
1 − p

′
2). For

example, in the first approximation in H
′
12, we have T

±(1)

12 (p1,p2,p
′
1,p

′
2)=

H
′
12(p1,p2,p

′
1,p

′
2), where the matrix element of the interaction Hamilto-

nian is given by (76). In general, it is not difficult to obtain from (80) and
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(76) the following expression for the matrix element of T12 in the momen-
tum representation:

T ±
12(p1,p2,p

′
1,p

′
2) = 1

(2π–h)3 t±(p1,p2,p
′
1,p

′
2)δ(p1 +p2 −p

′
1 −p

′
2),

t±(p1,p2,p
′
1,p

′
2) = ν(p1 −p

′
1)

+ 1
(2π–h)3

∫
dp

′′
1

∫
dp

′′
2

ν(p1−p
′′
1 )ν(p

′′
1 −p

′
1)

E±−K(p′′
1 )−K(p′′

2 )

×δ(p1+p2−p
′′
1−p

′′
2)+ . . .

(84)

This T -matrix obeys the following symmetry conditions

T ±
12(p1,p2,p

′
1,p

′
2) = T ±

12(p2,p1,p
′
2,p

′
1),

T ±
12(p1,p2,p

′
1,p

′
2) = T ±

12(p
′
1,p

′
2,p1,p2).

(85)

Calculating the trace (integral over p2) in (83) with the use of (84), (85),
(52) and (62), we get the following equation for the momentum distribu-
tion function

∂w(p1, t)

∂t
= πn

(2π–h)3–h

∫
dp2dp

′
1dp

′
2δ
[
K(p1)+K(p2)−K(p

′
1)−K(p

′
2)
]

×δ(p1 +p2 −p
′
1 −p

′
2)

∣∣∣t+(p1,p2,p
′
1,p

′
2)+ θt+(p1,p2,p

′
2,p

′
1)

∣∣∣2

×
[
w(p

′
1, t)w(p

′
2, t)−w(p1, t)w(p2, t)

]
. (86)

Equation (86) is the quantum Boltzmann equation in the linear
approximation in the particles’ density n (only binary collisions have been
accounted for). It includes (as it should be) the quantum mechanical pro-
cesses of particles’ exchange at scattering (the term proportional to θ ),
which are caused by the quantum statistics of particles. This irreversible
kinetic equation has been obtained with no use of a factorizing initial
condition (which introduces irreversibility) for the density matrix of the
system under consideration. In the suggested here approach the kinetic
Eq. (86) follows from the evolution Eq. (69), which is exact in the linear
approximation in n and describes an evolution process at any timescale
treating the initial correlations and correlations caused by collisions on
the equal footing. The described procedure of obtaining the time-irrevers-
ible Eq. (86) from Eq. (69) clearly indicates that irreversibility emerges on
the macroscopic timescale (74) as a result of the damping of both the ini-
tial correlations caused by interaction and correlations caused by collisions
(see also ref. 14). The latter may be secured by the appropriate properties
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(e.g. ergodic mixing flow) of the system’s dynamics. One may, therefore,
expect that Eq. (69) will switch automatically from a reversible behaviour
to an irreversible one (described by the Boltzmann Eq. (86)) if all corre-
lations vanish with time while going from microscopic to a large enough
timescale. Thus, the influence of initial correlations on an evolution pro-
cess may be revealed.

7. CONCLUSION

We have rederived the exact time-convolution homogeneous general-
ized master equation (TC-HGME) and obtained the exact time-convolu-
tionless homogeneous generalized master equation (TCL-HGME) which
are valid for both the classical and quantum physics cases. In the
derivation we have not used any approximation (like a factorizing initial
condition or RPA) or principle (like the Bogoliubov principle of weak-
ening of initial correlations). These equations have several advantages as
compared to the generalized master equations (GMEs). The HGMEs con-
tain the parameter of initial correlations depending on time in the “mass”
(super)operator acting on the relevant part of a distribution function
(statistical operator). Thus, these equations allow for treating the ini-
tial correlations consistently and on the equal footing with the collision
integral by expanding the “mass” (super)operator into the series on the
appropriate small parameter. The obtained equations are valid on any
timescale, particularly on the initial stage of evolution t0 � t � tcor, which
may be important for studying the irreversibility problem and the ultrafast
and non-Markovian relaxation processes. The HGMEs enable the consid-
eration of the entire evolution process of the relevant part of a distribution
function (statistical operator) and of the influence of initial correlations on
this process, because these equations can switch, in principle, e.g. from the
initial (reversible) regime into the kinetic (irreversible) one, automatically.
Special consideration has been given to the existence of the parameter of
initial correlations. It has been shown that the corresponding inverse oper-
ators exist (at least) in the considered first approximation in the density of
particles.

To test the developed general formalism in the quantum physics case,
we have focused in this work on the application of the TC-HGME to a
dilute gas of quantum particles. By appropriate selection of the projection
operator, we have obtained a new evolution Eq. (69) for a one-particle
density matrix, which retains initial correlations and is exact in the lin-
ear approximation in n for the space homogeneous case. In this approx-
imation the evolution equation for a one-particle momentum distribution
function contains only binary collisions and a two-particle time-dependent
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(through only two-particle dynamics) correlation function as well as the
symmetrization operator Pij (caused by quantum statistics) in the param-
eter accounting for initial correlations. It has been shown that on the
macroscopic timescale this equation (valid on any timescale) may become
equivalent to the quantum Boltzmann Eq. (86) if all correlations caused
by interaction between particles vanish on this timescale. All stages of evo-
lution described by Eq. (69) may be numerically modelled for some spe-
cific interaction between particles, specific initial two-particle correlation
function g(1,2) and initial values f1(i) (i =1,2).

Next approximation in n will evidently result in the additional, non-
linear in f1, terms, which account for the Fermi or Bose statistics of the
particles in the scattering processes.

The developed formalism may be applied to an open quantum system
like a subsystem interacting with an environment (heat bath). This will be
done in the next paper.
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